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Trimethylsilyl_ trifluoromethanesuI.fona.te (TMSOTH) _has long Ph TMSOTY, i PrNEt
been recognized as a powerful silylating agent which was re-  Anx,, o (CeHe), 0 °C Anu., o
ported to be 10times more reactive than TMSCI [1a]. Many “"OH . > “IOTMS
reagent combinations of TMSOTf with baseg. triethyl 98%
amine, lutidine, 1,8-bi®{,N-dimethylamino)naphthaline (pro-
ton sponge), have been described and successfully employed Med Med
in Organic Synthesis [1]. In this paper, we try to provide an

overview of the work that has been done with TMSOTf and 3 An = Anisyl 4
the kinetically fast, non-nucleophilic balNeN-di-iso-propyl Scheme 1

ethyl amine (Hinig base). Beneficial factors of the latter rea-
gent combination are its high silylation capacity which often

goes hand in hand with an useful regio- and che-moselectivyeen reported for TMSOTH/NE6] is not possible. The rela-

ity (Chapter 1) and its potential for inducing both 1,2- andijvely small and strong silylating agent TMSOTf can conse-

1,3-elimination reactions (Chapter 2). quently approach even sterically encumbered positions and
facilitate a silylation. Silylation reactions of this type have
been conducted in CEIl, or benzene as the solvent [3-5].

1. Silylation Reactions
1.2. Silyl Enol Ether Formation

L1 O-Silylation of Alcohols The high steric bulk of the Huinig baisBr,NEt is often use-
TheO-silylation of alcohols (silyldeprotonation) is certainly ful if the regio- or chemoselective formation of silyl enol ethers
one of the most frequently used protecting group transformais desired. Whereas the base acts only as a fast proton trap in
tions [2]. TMSOTf and-Pr,NEt have been employed for the theO-silylation of alcohols its role in the silyl enol ether for-
O-trimethylsilylation of alcohols only to a limited extent pre- mation from ketones and other carbonyl compounds is the
sumably because the results obtained with the less expensigelectivity-determining irreversible deprotonation of the
silylating agent TMSCI and NE&s base were satisfactory in O-silyloxonium ion formed as the immediate precursor. It can
most cases. The few examples for which the use of TMSOTfibe therefore readily comprehended why the more accessible
i-Pr,NEt was reported are concerned with the protection oproton is favorable abstracted in these reactions if TMSOTf/
sterically congested secondary or tertiary alcohols [3—5]. Twa-Pr,NEt is used as the reagent combination. Attempted con-
examples are given in Scheme 1 in which the tertiary alcoventional silyl enol ether formation of indblproved prob-
hols1 and3 are converted to the corresponding silyl etlRers lematic as the amide moiety showed a tendency to also react
[3] and4 [4]. with LDA and TMSCI. The regioselectivity problem was fi-
Indeed, the high silylation potential of TMSOTf can be fully nally overcome with TMSOT#Pr,NEt, and the reaction of
exploited in combination with the non-nucleophilic base5 yielded exclusively the desired silyl enol etbgv]. Simi-
i-Pr,NEt as the formation of an ammonium salt which haslarly, the formation of the silyl enol eth8rfrom the steroid
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epoxide? was regio- and chemoselectively accomplished asn the Pummerer reaction of an allyl sulfoxide [13] but the
shown in Scheme 2 [8]. In both cases, the silyl enol ethergiethod does not appear to be particularly well-suited for this
were not isolated and instead used immediately without puritransformation. If the substituent R is an alkyl group an elim-

fication. ination to the corresponding vinyl sulfides takes place [14,
15].
Q TMSOTf, jPr,NEt ™SO
CH,Cly), 0 °C— r.t.
N N S. i ProNEt H. _S. H._ s®
—_— —~—
)\/\/\ W ( Ph Y Ph GY Ph
0 o R R R
5 6 11 12
® R._S-
— > RS, — Ph
TMSOTf, iPryNEt OTMS
(CeHe), -78 °C 13 14
Scheme 4
TMSO
7 8

One the other hand, if R is an alkenyl group it is possible to
intercept the intermediate ylid or the corresponding thio-
nium ion13 by suitable nucleophiles. To this end, Hurer
al. have studied the reaction of allyl sulfoxides with silyl enol
1.3. C-Silylation ethers which yielded the corresponding allylation products

[13, 16]. An example is shown in Scheme 5. The sulfoxide
Due to the high oxophilicity of silicon the formation of C-Si- 15was converted to thed-unsaturated ketorié upon treat-
bonds with TMSOTi£Pr,NEt is only possible if a@-silyla- ment with 1-phenyl-1-trimethylsilyloxyethene and TMSOT{/
tion preceeds or unless an oxygen nucleophile is present inPr,NEt. Interestingly, the corresponding ammonium Ealt
the starting material. Both cases are known. An effe€ive was formed in this example provided no other nucleophile
silylation ofN-azol oxides was reported by Begtrup and Ved-was added [13].
sg upon intermediate silylation of the oxygen atom [9]. The
procedure is exemplified by the reaction of compdmdich OTMS
yielded theC-silylated producf0 after work-up (Scheme 3). Ph/& TMSOTT, .

™S o} i ProNEt, (CH,Cly), -78 °C
I > Ph ™S
H3C HsC ™S S\Ph 70% |

/Y o TMSOTf, jPrNEt )/ o SPh

Scheme 2

N\N/g\o (CHCl). it N\,}I«g\o 15 16
Ph 88% Ph
9 10 ™S TMSOTS, iPr,NEt (
0 (CH,Cly), -78 °C
Scheme 3 ;\/S‘Ph quant }N%TMS
/K SPh  oTf®
Diazomethane as an example for a good carbon nucleophile 15 1
was converted to the correspondidgrimethylsilyl deriva-
tive TMSCHN, upon treatment with TMSOTHPr,NEt at
—78 °Cin ether (74% yield) [10]. The method was claimed to Q /* TMSOT, iPrNEt H
be the most effective one for the formation of the synthetical-HzN\n/vS\F,h (CH,Cl), -78 °C );f-”SPh
ly valuable trimethylsilyl diazomethane [11]. o 6% ~ 5 NH 67% ee
18 19

2. Elimination Reactions
2.1. Pummerer Reaction Scheme 5

In principle, a Pummerer type rearrangement [12] as depict-

ed in Scheme 4 should be possible starting from a sulfoxide Intermediate ylides such 42 (Scheme 4) can also be
11 and TMSOTf-Pr,NEt. Consecutive products of the pro- trapped intramolecularly. An appealing example is the con-
poseda-trimethylsilyloxysulfidel4 have indeed been detected version of the chiral sulfoxid8 to the3-lactam19, which

J. Prakt. Cheml999 341, No. 4 411



THE REAGENT T. Bach, H. Brummerhop

proceeded enantioselectively (Scheme 5). Starting from opti2.3. 1,3-Elimination Reactions
cally pure sulfoxidel8 the corresponding product was ob-
tained with 69%ee[17]. The recorded chirality transfer rules
out that the reaction proceedad a thionium ion such ak3
(Scheme 4). The bas®r,NEt proved to be essential to guar-
antee an optimum conversion to the product. The yield re
ported with NEf was much lower (40%).

N,O-acetals which do not carry@hydrogen atom and which
are consequently not suited for an 1,2-elimination may still
react with TMSOTfPr,NEt. If a 2-unsubstituted oxazoline
such a®26 (Scheme 8) is treated with the reagent combina-
tion the attack of the silyl group at the oxygen atom generates
an oxonium ion from which g-proton is eliminated to yield
azomethine ylide7 [24]. The reactive 1,3-dipol can be
trappedn situby suitable dipolarophiles,g. N-phenyl male-

The alkoxy group in a®,0- or anN,O-acetal is readily imid (28). The particular example depicted in Scheme 8 de-
cleaved upon silylation with TMSOTf and yields a stabilized serves particular mention as it proceeded with excellent fa-
oxonium or iminium ion which is able to react with nucleo- cial diastereoselectivity (>95%e). A mixture ofexc (292)
philes [18]. If a non-nucleophilic base is added instead of @&ndendoeproduct @9b) was obtained. The 1,3-elimination
nucleophile an elimination occurs. The net result is a 1,2-elias an entry into azomethine ylides has been nicely used by
mination of an alcohol from &,0- or N,O-acetal. The reac- Royer, Husson and co-workers for the stereoselective syn-
tion was exploited to a wide extent by Gassmial for the  thesis of a variety of pyrrolidines [25].

formation of cyclic and acyclic enol ethers [19]. Two exam-

2.2. 1,2-Elimination Reactions

ples are shown in Scheme 6. The transformation of compound Ph
20 to norbornenel is prototypical for the elimination of Ph )
: L TMSOTF, iPr,NEt OTMS
MeOH from O,0-dimethyl acetals whereas the elimination crCl 6°C ®
from cyclic O,0-acetals such a2 yielded silyloxy-substi- Meooc._N._©O (CHzCl), -7 o ©, Ny
tuted enol ethers such2® Further applications of this meth- 86% /J;
od in the synthesis of more complex molecules have been 26 MeO™ "O
reported [20]. 27
TMSOTF, iPr,NEt Ph Ph
OMe  (CHiClp), 0°C —r.t. o
o - ou P OTMS OTMS
OMe 0 e N
O\V\_/V/O Me0OC, N Me0OCy,. N
— 28
62%
o] N o] 0 N o]
Ph Ph

29a 29b
(0]

* . (exo) (endo)
TMSOTf, iProNEt
OO 1Pry O/O%OTMS Scheme 8

(CH,Cl3), 0 °C —=rt.
93%

22 23 In conclusion, the reagent combination TMSQOHY,NEt

combines favorably the properties of a strong oxophilic Lewis

acid and a fast and comparably strong base. Upon activation

with TMSOTTf a subsequent deprotonation can readily occur.
In 2-methoxy-substituted nitrogen heterocycies,in cy- The reagent combination can be consequently not only used

clic N,O-acetals in which the nitrogen atom is part of the hetfor simpleO- andC-silylation but for a number of other in-

erocycle, the elimination of MeOH was favorably facilitated teresting elimination reactions the potential of which will cer-

with TMSOTfi-Pr,NEt [21]. The reaction has been original- tainly be explored further.

ly employed for the formation of dihydropyrrole,g. 25

(Scheme 7), from the corresponding acetatg,24, but it is

apparently also useful for the formation of other 2,3-unsatuOur own work in the area of dihydropyrrols was generously

rated nitrogen heterocycles [22]. The method has been usetlipported by the Deutsche Forschungsgemeinschaft (Ba 1372/

as a step in the synthesis of the antifungal agent (+)-preusssi1 and /3-2), and by the Fonds der Chemisc¢héustrie.

from L-pyroglutamic acid [23].

Scheme 6
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