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Trimethylsilyl trifluoromethanesulfonate (TMSOTf) has long
been recognized as a powerful silylating agent which was re-
ported to be 109 times more reactive than TMSCl [1a]. Many
reagent combinations of TMSOTf with bases, e.g. triethyl
amine, lutidine, 1,8-bis(N,N-dimethylamino)naphthaline (pro-
ton sponge), have been described and successfully employed
in Organic Synthesis [1]. In this paper, we try to provide an
overview of the work that has been done with TMSOTf and
the kinetically fast, non-nucleophilic base N,N-di-iso-propyl
ethyl amine (Hünig base). Beneficial factors of the latter rea-
gent combination are its high silylation capacity which often
goes hand in hand with an useful regio- and che-moselectiv-
ity (Chapter 1) and its potential for inducing both 1,2- and
1,3-elimination reactions (Chapter 2).

1. Silylation Reactions

1.1. O-Silylation of Alcohols

The O-silylation of alcohols (silyldeprotonation) is certainly
one of the most frequently used protecting group transforma-
tions [2]. TMSOTf and i-Pr2NEt have been employed for the
O-trimethylsilylation of alcohols only to a limited extent pre-
sumably because the results obtained with the less expensive
silylating agent TMSCl and NEt3 as base were satisfactory in
most cases. The few examples for which the use of TMSOTf/
i-Pr2NEt was reported are concerned with the protection of
sterically congested secondary or tertiary alcohols [3–5]. Two
examples are given in Scheme 1 in which the tertiary alco-
hols 1 and 3 are converted to the corresponding silyl ethers 2
[3] and 4 [4].

Indeed, the high silylation potential of TMSOTf can be fully
exploited in combination with the non-nucleophilic base
i-Pr2NEt as the formation of an ammonium salt which has
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been reported for TMSOTf/NEt3
 [6] is not possible. The rela-

tively small and strong silylating agent TMSOTf can conse-
quently approach even sterically encumbered positions and
facilitate a silylation. Silylation reactions of this type have
been conducted in CH2Cl2 or benzene as the solvent [3–5].

1.2. Silyl Enol Ether Formation

The high steric bulk of the Hünig base i-Pr2NEt is often use-
ful if the regio- or chemoselective formation of silyl enol ethers
is desired. Whereas the base acts only as a fast proton trap in
the O-silylation of alcohols its role in the silyl enol ether for-
mation from ketones and other carbonyl compounds is the
selectivity-determining irreversible deprotonation of the
O-silyloxonium ion formed as the immediate precursor. It can
be therefore readily comprehended why the more accessible
proton is favorable abstracted in these reactions if TMSOTf/
i-Pr2NEt is used as the reagent combination. Attempted con-
ventional silyl enol ether formation of indol 5 proved prob-
lematic as the amide moiety showed a tendency to also react
with LDA and TMSCl. The regioselectivity problem was fi-
nally overcome with TMSOTf/i-Pr2NEt, and the reaction of
5 yielded exclusively the desired silyl enol ether 6 [7]. Simi-
larly, the formation of the silyl enol ether 8 from the steroid
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epoxide 7 was regio- and chemoselectively accomplished as
shown in Scheme 2 [8]. In both cases, the silyl enol ethers
were not isolated and instead used immediately without puri-
fication.

in the Pummerer reaction of an allyl sulfoxide [13] but the
method does not appear to be particularly well-suited for this
transformation. If the substituent R is an alkyl group an elim-
ination to the corresponding vinyl sulfides takes place [14,
15].
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1.3. C-Silylation

Due to the high oxophilicity of silicon the formation of C–Si-
bonds with TMSOTf/i-Pr2NEt is only possible if an O-silyla-
tion preceeds or unless an oxygen nucleophile is present in
the starting material. Both cases are known. An effective C-
silylation of N-azol oxides was reported by Begtrup and Ved-
sø upon intermediate silylation of the oxygen atom [9]. The
procedure is exemplified by the reaction of compound 9 which
yielded the C-silylated product 10 after work-up (Scheme 3).
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Diazomethane as an example for a good carbon nucleophile
was converted to the corresponding C-trimethylsilyl deriva-
tive TMSCHN2 upon treatment with TMSOTf/i-Pr2NEt at
–78 °C in ether (74% yield) [10]. The method was claimed to
be the most effective one for the formation of the synthetical-
ly valuable trimethylsilyl diazomethane [11].

2. Elimination Reactions

2.1. Pummerer Reaction

In principle, a Pummerer type rearrangement [12] as depict-
ed in Scheme 4 should be possible starting from a sulfoxide
11 and TMSOTf/i-Pr2NEt. Consecutive products of the pro-
posed α-trimethylsilyloxysulfide 14 have indeed been detected
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One the other hand, if R is an alkenyl group it is possible to
intercept the intermediate ylide 12 or the corresponding thio-
nium ion 13 by suitable nucleophiles. To this end, Hunter et
al. have studied the reaction of allyl sulfoxides with silyl enol
ethers which yielded the corresponding allylation products
[13, 16]. An example is shown in Scheme 5. The sulfoxide
15 was converted to the γ ,δ-unsaturated ketone 16 upon treat-
ment with 1-phenyl-1-trimethylsilyloxyethene and TMSOTf/
i-Pr2NEt. Interestingly, the corresponding ammonium salt 17
was formed in this example provided no other nucleophile
was added [13].
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Intermediate ylides such as 12 (Scheme 4) can also be
trapped intramolecularly. An appealing example is the con-
version of the chiral sulfoxide 18 to the β-lactam 19, which
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proceeded enantioselectively (Scheme 5). Starting from opti-
cally pure sulfoxide 18 the corresponding product was ob-
tained with 69% ee [17]. The recorded chirality transfer rules
out that the reaction proceeded via a thionium ion such as 13
(Scheme 4). The base i-Pr2NEt proved to be essential to guar-
antee an optimum conversion to the product. The yield re-
ported with NEt3 was much lower (40%).

2.2. 1,2-Elimination Reactions

The alkoxy group in an O,O- or an N,O-acetal is readily
cleaved upon silylation with TMSOTf and yields a stabilized
oxonium or iminium ion which is able to react with nucleo-
philes [18]. If a non-nucleophilic base is added instead of a
nucleophile an elimination occurs. The net result is a 1,2-eli-
mination of an alcohol from an O,O- or N,O-acetal. The reac-
tion was exploited to a wide extent by Gassman et al. for the
formation of cyclic and acyclic enol ethers [19]. Two exam-
ples are shown in Scheme 6. The transformation of compound
20 to norbornene 21 is prototypical for the elimination of
MeOH from O,O-dimethyl acetals whereas the elimination
from cyclic O,O-acetals such as 22 yielded silyloxy-substi-
tuted enol ethers such as 23. Further applications of this meth-
od in the synthesis of more complex molecules have been
reported [20].

2.3. 1,3-Elimination Reactions

N,O-acetals which do not carry a β-hydrogen atom and which
are consequently not suited for an 1,2-elimination may still
react with TMSOTf/i-Pr2NEt. If a 2-unsubstituted oxazoline
such as 26 (Scheme 8) is treated with the reagent combina-
tion the attack of the silyl group at the oxygen atom generates
an oxonium ion from which a γ -proton is eliminated to yield
azomethine ylide 27 [24]. The reactive 1,3-dipol can be
trapped in situ by suitable dipolarophiles, e.g. N-phenyl male-
imid (28). The particular example depicted in Scheme 8 de-
serves particular mention as it proceeded with excellent fa-
cial diastereoselectivity (>95% de). A mixture of exo- (29a)
and endo-product (29b) was obtained. The 1,3-elimination
as an entry into azomethine ylides has been nicely used by
Royer, Husson and co-workers for the stereoselective syn-
thesis of a variety of pyrrolidines [25].
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In 2-methoxy-substituted nitrogen heterocycles, i.e. in cy-
clic N,O-acetals in which the nitrogen atom is part of the het-
erocycle, the elimination of MeOH was favorably facilitated
with TMSOTf/i-Pr2NEt [21]. The reaction has been original-
ly employed for the formation of dihydropyrrols, e.g. 25
(Scheme 7), from the corresponding acetals, e.g. 24, but it is
apparently also useful for the formation of other 2,3-unsatu-
rated nitrogen heterocycles [22]. The method has been used
as a step in the synthesis of the antifungal agent (+)-preussin
from L-pyroglutamic acid [23].

TMSOTf, i Pr2NEt
(CH2Cl2), 0 °C

79%

24 25

N N

COOMe COOMe

MeO

Scheme 7

TMSOTf,  i Pr2NEt
(CH2Cl2), -78 °C

86%

26
27

N O

Ph

MeOOC N

Ph

OTMS

62%

N OO
28

N

N
OTMS

Ph

HH

MeOOC

O O

Ph

Ph
N

N
OTMS

Ph

HH

MeOOC

O O

Ph

29a
(exo)

29b
(endo)

+

MeO O

Scheme 8

In conclusion, the reagent combination TMSOTf/i-Pr2NEt
combines favorably the properties of a strong oxophilic Lewis
acid and a fast and comparably strong base. Upon activation
with TMSOTf a subsequent deprotonation can readily occur.
The reagent combination can be consequently not only used
for simple O- and C-silylation but for a number of other in-
teresting elimination reactions the potential of which will cer-
tainly be explored further.

Our own work in the area of dihydropyrrols was generously
supported by the Deutsche Forschungsgemeinschaft (Ba 1372/
3-1 and /3-2), and by the Fonds der Chemischen Industrie.
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